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Abstract. The basic issues of renormalization group (RG) theory, i.e. universality, crossover phenomena,
relevant interactions etc. are verified experimentally on magnetic materials. Universality is demonstrated on
account of the saturation of the magnetic order parameter for T → 0. Universal means that the deviations
with respect to saturation at T = 0 can perfectly be described by a power function of absolute temperature
with an exponent ε that is independent of spin structure and lattice symmetry. Normally the T ε function
holds up to ∼0.85Tc where crossover to the critical power function occurs. Universality for T → 0 cannot
be explained on the basis of the material specific magnon dispersions that are due to atomistic symmetry.
Instead, continuous dynamic symmetry has to be assumed. The quasi particles of the continuous symmetry
can be described by plane waves and have linear dispersion in all solids. This then explains universality.
However, those quasi particles cannot be observed using inelastic neutron scattering. The principle of
relevance is demonstrated using the competition between crystal field interaction and exchange interaction
as an example. If the ratio of crystal field interaction to exchange interaction is below some threshold value
the local crystal field is not relevant under the continuous symmetry of the ordered state and the saturation
moment of the free ion is observed for T → 0. Crossover phenomena either between different exponents
or between discrete changes of the pre-factor of the T ε function are demonstrated for the spontaneous
magnetization and for the heat capacity.

PACS. 05.10.Cc Renormalization group methods – 75.30.Ds Spin waves – 75.40.Cx Static properties
(order parameter, static susceptibility, heat capacities, critical exponents, etc.)

1 Introduction

Renormalization group (RG) theory knows a number of
important terms such as stable fixed points, continuous
dynamic symmetry, universality, relevant and non relevant
interactions, crossover phenomena etc. [1]. The aim of this
experimental work is to demonstrate that the concepts of
RG theory are in complete agreement with experiment
and can easily be verified on magnetic materials.

One of the main conclusions of RG theory is that the
thermodynamics of quantities such as the spontaneous
magnetization, the heat capacity or the susceptibility is
governed by symmetries. Two dynamic symmetries have
to be distinguished in solids: the atomistic dynamic sym-
metry at high temperatures and the continuous dynamic
symmetry at low temperatures. The material specific, i.e.
non universal properties are all on the length scale of
the inter-atomic distance and therefore are defined by
the atomistic symmetry. On this length scale the discrete
translational symmetry elements of the lattice are deci-
sive. In particular, the atomistic structure presets a short
wavelength (high energy) limit for phonons and magnons.
Saturation of the heat capacity towards the Dulong-Petit
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asymptotic value as well as the Curie-Weiss susceptibility
are essentially a consequence of the discrete lattice struc-
ture and the finite near neighbour interaction energies.
On this length scale the crystal electric field and the short
range Heisenberg interactions are the relevant interactions
in the magnetic materials.

On approaching the critical point the correlation
length expands and, finally, becomes larger than the near
neighbour distance. This entails dynamic percolation and
crossover to continuous dynamic symmetry. The typical
symmetry in the vicinity of the critical point is invariance
with respect to transformations of the length scale [1].
This is the definition of a continuum. As a consequence,
from a dynamic point of view the magnets have to be
treated as a continuum. As is well known continuous dy-
namic symmetry holds in the critical range above and
below Tc. This is the justification for the application of
field theoretical methods for the calculation of critical ex-
ponents [2]. In other words, the crossover from atomistic
to continuous dynamic symmetry can be localized at the
change from Curie-Weiss susceptibility to critical suscep-
tibility.

Continuous dynamic symmetry holds not only for
T → Tc but also for T → 0. T = 0 is another stable fixed
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Fig. 1. Spontaneous magnetization of fcc nickel measured by
zero-field 61Ni NMR as a function of absolute temperature [12].
Crossover from universal T 2 power function for T → 0 to uni-
versal critical power function with β ∼ 1/3 for T → Tc is at
T ∗ = 420 K. The direct crossover between the two univer-
sal power functions shows that universality holds in the whole
ordered state. The T 2 universality class is characteristic for
isotropic 3D interactions and half-integer spin [5]. It can be
assumed that Seff = 1/2.

point. This is well known from Debye’s continuum theory
of the lattice dynamics of the non magnetic solids. The
universal T 3 law predicted for the heat capacity of the
non magnetic solids is confirmed for many materials with
different chemical compositions and lattice symmetries.
In the non magnetic solids the change from continuous to
atomistic dynamic symmetry can be localized at the va-
lidity limit of Debye’s T 3 function [3,4]. This is typically
at temperatures between 10 and 30 K.

Also the magnetic order parameter shows universality
for T → 0 [5]. This means that the deviations with respect
to saturation at T = 0 can precisely be described by a
single universal power function of absolute temperature
(see Figs. 1 and 2). This power function normally holds up
to ∼0.85Tc where crossover to the critical power function
occurs [6]. As a consequence, universality, i.e. continuous
dynamic symmetry holds for all temperatures in the long
range ordered state and in the critical range above Tc.

The experimentally known universal exponents of the
magnetic order parameter for T → 0 are empirical and
await a theoretical explanation. They depend, of course,
on the dimensionality of the relevant interactions but, sur-
prisingly, also on whether the spin quantum number is in-
teger or half-integer [5,6]. This is equivalent to an odd or
even number of states, N , per magnetic particle through
N = 2S + 1. Note that a spin dependent thermodynam-
ics is observed only in the ordered state but not in the
Curie-Weiss regime of the paramagnetic phase [7]. This is
indicative of a change of the relevant excitations at the
crossover from atomistic to continuous dynamic symme-
try. The number of degrees of freedom per spin, i.e. 2S+1

Fig. 2. Normalized sublattice magnetizations for a selection
of antiferromagnets with isotropic 3D interactions and integer
spins as a function of T 9/2. For KNiF3 and USb the asymptotic
function for T → 0 is T 2. This is not resolved on the T 9/2

scale. FeWO4 and FeCl2 have S = 2, KNiF3 has S = 1, UO2

has S = 1 [13,14] and USb has S = 1 [8]. For FeWO4, USb and
KNiF3 the abscissa values are divided by the given factors.

seems to be the only atomistic detail that remains impor-
tant for the continuous dynamics.

Continuous dynamic symmetry implies a particular
type of excitations. Typical for those excitations is a lin-
ear dispersion. This is well known from the electromag-
netic radiation in vacuum and from Debye’s continuum
theory of the lattice dynamics. The vacuum is clearly a
continuum with no short wavelength (high energy) limit.
Photons and Debye quasi particles can be described by
plane waves.

On the other hand, the dispersion relations of the
atomistic phonons and magnons are essentially non lin-
ear. In particular these dispersions saturate towards a
finite energy at the Brillouin zone boundary. We must,
hence, assume that the quasi particles of the continuous
and atomistic symmetry represent different degrees of free-
dom with particular dispersions and densities of states.
These two quasi particles coexist. According to RG the-
ory we have to ask which one is relevant and defines the
dynamics. This will be the quasi particles with the lower
dispersion energy or with the higher density of states. In
this way the two types of excitations become relevant al-
ternatively. For instance, at low energies the quasi par-
ticles of the Debye theory have very similar dispersions
as the acoustic phonons but they have higher density of
states and therefore are relevant. Beyond the universal T 3

function of the heat capacity the phonons are the relevant
excitations. The change from one to the other type of exci-
tations gives rise to a crossover in the heat capacity [3,4].

The magnon excitation spectra evaluated by inelastic
neutron scattering exhibit no obvious universal feature. In
particular, for ferromagnets the magnon dispersion curves
start essentially as a quadratic function of wave vector
but for antiferromagnets as a linear function of wave vec-
tor. Exceptions from this rule can occur and have been
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observed for the antiferromagnet CeAs for which nearly
quadratic magnon dispersion has been observed [8]. For
the ferromagnet EuS nearly linear magnon dispersion was
observed at very low wave vector values [9]. In other words
there is neither systematic nor universality in the magnon
dispersion relations. As a consequence, the magnons can-
not be responsible for the observed universal power func-
tions of temperature. The magnons are responsible for the
material specific transition temperature. Once the tran-
sition temperature is established the quasi particles of
the continuous symmetry govern the temperature depen-
dence.

To summarize, the observed universality cannot be ex-
plained by atomistic models but requests a continuum the-
ory of magnetism. In a continuum there are no interactions
but only excitations. The quasi particles due to the con-
tinuous dynamic symmetry are plane waves with linear
dispersion in all solids. This then explains universality.
On the other hand, the quasi particles of the atomistic
symmetry, the magnons, are determined by the interac-
tions between the atomistic spins. The general properties
of the (quasi)particles due to continuous symmetry have
been described by Goldstone, Salam and Weinberg [10].
Similar as photons in vacuum and sound waves in solids
these particles have neither mass nor magnetic moment.
As a consequence they cannot be observed using inelastic
neutron scattering.

2 Universality

The magnetic order parameter shows universal tempera-
ture dependence in the vicinity of the stable fixed points
T = 0 and T = Tc [6]. Universality is represented by a
temperature power function of the distance from the sta-
ble fixed point. For T → Tc this is the well known critical
power function of the form (Tc − T )β . For T → 0 the
universal function is a power function of absolute tem-
perature, T ε. Crossover between the power function for
T → 0 and for T → Tc is typically at T ∗ ∼ 0.85Tc [6].
At this crossover temperature the correlation length has
a minimum of typically two times the near neighbour dis-
tance [11]. This seems to be sufficient to establish dy-
namic percolation and continuous dynamic symmetry in
the whole ordered range.

Figure 1 visualizes the direct crossover from universal
power function for T → 0 to critical power function for
T → TC for ferromagnetic fcc nickel. These data are ob-
tained by zero field 61Ni NMR [12]. Since nickel is cubic for
all temperatures the interactions can be assumed to be 3D
isotropic. We have identified the T 2 universality class as
characteristic for isotropic 3D magnets with half-integer
spin, i.e. with an even number of relevant states [5]. Con-
sidering that the saturation magnetic moment is 0.617 µB

per Ni it appears reasonable to assume that the effec-
tive spin is Seff = 1/2, i.e. that there are two relevant
states. The crossover between the two power functions is
at T ∗ = 420 K. The critical range, therefore, is unusually
large. The critical exponent is close to β ∼ 1/3.

Table 1. Spin quantum numbers, S, Néel temperatures, TN

and magnon excitation gaps, Egap, for a selection of antiferro-
magnets with integer spin and isotropic 3D interactions (T 9/2

universality class). The origin of the gap is not clear in these
isotropic magnets. Because of a different temperature depen-
dence of gap and sublattice magnetization the gap is consid-
ered as an independent order parameter. The fact that Egap is
not proportional to TN supports this. Sublattice magnetization
and gap decrease by T 9/2 functions.

UO2 FeCl2 USb KNiF3 YVO3

S = 1 S = 2 S = 1 S = 1 S = 1
TN (K) 30.8 23.55 217 245.5 116.1

Egap/kB (K) 26 24 74 70 80
Reference [15] [16] [8] [17] [18]

Figure 2 demonstrates universality of the order param-
eter for T → 0 for a selection of antiferromagnets with
integer spin and isotropic 3D interactions. These data are
obtained partly on powder materials (FeCl2, FeWO4) but
partly on single crystals (UO2, KNiF3, USb) using neu-
tron scattering (instruments E6 and E1 of HMI/Berlin).
FeCl2 and FeWO4 have S = 2 while KNiF3 has S = 1.
USb has S = 1 [8]. UO2 also has S = 1 [13,14].

Linear dependence on T 9/2 temperature scale for all
samples shows that materials with different chemical com-
positions and lattice symmetries can fall in the same uni-
versality class. The material specific properties enter the
pre-factor of the T 9/2 function only and are determined
essentially by the (non universal) magnetic ordering tem-
perature, i.e. by the magnetic hardness. We have identified
the T 9/2 universality class as characteristic for isotropic
3D magnets with integer spin [5]. Note that isotropic 3D
behaviour can occur also in non cubic materials. Condition
for this is that the anisotropy of the interactions is below
some threshold value. The anisotropy of the interactions
is then not relevant, i.e. it does not induce a crossover into
a lower symmetry class.

We should note that in KNiF3 and USb the T 9/2

function is not the asymptotic behaviour for T → 0 [7].
Asymptotically T 2 function is observed. This detail is not
resolved in Figure 2. Normalization of the T 9/2 function
to unity for T → 0 therefore slightly underestimates the
saturation value.

As far as experimental information is available there
seems to be always a magnon excitation gap in the mag-
nets of the isotropic 3D universality class with integer
spin [7]. If the magnons would be relevant one would ex-
pect that the order parameter decreases by an exponential
function. The observed power functions confirm that the
magnons are not relevant and that the relevant excitation
spectrum must be continuous.

The gap decreases as the order parameter by T 9/2

function but the pre-factor of the T 9/2 function is much
larger, typically by a factor of 2.5. Because of this differ-
ent temperature dependence the gap has been identified
as a second order parameter. In Table 1 the magnon gap
values and the transition temperatures of some materials
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Fig. 3. Zero field spontaneous magnetization of bcc iron mea-
sured by 57Fe Mössbauer spectroscopy (MS) [19] and 57Fe
NMR [20] vs. T 2. At T ∗ = 615 K crossover from T 2 function to
T 9/2 function can be identified. This crossover indicates change
from half-integer to integer spin. It can be assumed that this
crossover is from S = 3/2 to S = 2, i.e. from 4 to 5 relevant
states.

that belong to the T 9/2 universality class are compiled. It
can be seen that the two quantities do not scale.

3 Crossover phenomena

We have to distinguish between different types of crossover
events. Figure 1 has demonstrated the crossover of the
order parameter between the two stable fixed points T = 0
and T = TC using nickel as an example. This crossover
occurs in all magnets [6]. Figure 1 represents the simplest
situation with no further crossover event.

Another type of crossover can occur additionally if the
number of relevant states changes as a function of tem-
perature. This crossover therefore is characterized by a
change of the exponent ε. It can be anticipated that the
number of relevant states can only increase with increasing
temperature.

Such a crossover seems to occur in the itinerant fer-
romagnet bcc iron. Since iron has cubic bcc structure for
all temperatures the interactions are 3D isotropic through-
out. Observation of a crossover therefore can be attributed
to a change of the relevant states.

Figure 3 shows normalized 57Fe Mössbauer spec-
troscopy (MS) data [19] and normalized NMR data [20] as
a function of T 2. At low temperatures T 2 function is ob-
served. This is typical for half-integer spin (even number
of states). As we have shown before [5] this T 2 function
is excellently resolved by the 57Fe NMR data of refer-
ence [21]. Considering that the saturation moment of iron
is 2.217 µB per Fe atom it appears reasonable to assume
that the effective spin is Seff = 3/2, i.e. the number of
relevant states is N = 4.

Fig. 4. Crossover between two T 3/2 functions with different
pre-factors (amplitude crossover) in the temperature depen-
dence of the zero field 53Cr NMR (∼order parameter) of CrCl3
after reference [22]. A change of pre-factor indicates a change of
a non relevant parameter such as the absolute value of the in-
teractions. Crossover to larger slope at low temperatures means
decreasing interactions.

At crossover temperature T ∗ = 615 K the exponent
changes from ε = 2 to ε = 9/2. This indicates a change to
integer spin. It is reasonable to assume that the effective
spin now is Seff = 2, i.e. that the number of relevant states
has increased from 4 to 5. We should note that significance
of a spin quantum number in a magnetic continuum is not
completely clear. At the moment we can only assume that
the magnetic plane waves can have different polarizations
and that these polarizations are related to the atomic spin.

A further type of crossover occurs if the symmetry
changes. A crossover of this type is at the change from
Curie-Weiss susceptibility to critical susceptibility in the
paramagnetic phase. At this crossover the dynamic sym-
metry changes from atomistic to continuous. Examples for
this we have presented in reference [11].

Another very interesting type of crossover we have
called amplitude crossover [5]. At this crossover the pre-
factor of the T ε function changes discontinuously. This
crossover demonstrates that the pre-factor of the univer-
sal power function assumes discrete values only. This is
a necessary condition for the universal power function to
hold exactly between two crossover events. As an exam-
ple we show in Figure 4 53Cr NMR data for hexagonal
CrCl3 after reference [22]. The observed T 3/2 universality
class is characteristic for anisotropic 3D interactions and
half-integer spin (S = 3/2). Since the change in slope is
not very large a high experimental accuracy is necessary
to resolve an amplitude crossover.

Discrete change of the pre-factor indicates a significant
change of a non relevant parameter such as the absolute
strength of the magnetic interactions. The crossover to
steeper temperature dependence at low temperature can
qualitatively be explained by decreasing interactions as
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Fig. 5. Molar heat capacity of tetragonal MnF2 as a function
of T 3/2. Crossover from low temperature T 4 function (fitted
exponent 4.036 ± 0.020) to high temperature T 3/2 function at
T ∗ = 12 K is identified. Comparison with the T 3 functions
of the non magnetic reference compounds SrF2 and ZnF2 [24]
shows that the heat capacity of MnF2 is considerably larger
due to the magnetic degrees of freedom. The lattice, therefore,
is not relevant and the observed T 4 and T 3/2 universal func-
tions can be assumed to be defined by the relevant magnetic
subsystem.

a function of decreasing temperature. Although the in-
teractions can be assumed to change continuously with
temperature a discrete crossover event can eventually
be induced by a change beyond some threshold. This
demonstrates the stability of the universality classes. Am-
plitude crossovers we have identified in the spontaneous
magnetization of ferromagnetic GdZn [23] in yttrium iron
garnet (YIG), CrBr3, ZrF2, FeBO3 and YFe10Mo2 [5].

The low temperature heat capacity is particularly rich
in crossover phenomena [4]. In Figure 5 we show heat ca-
pacity data of MnF2 on T 3/2 temperature scale. Crossover
from low temperature T 4 function to high temperature
T 3/2 function at T ∗ = 12 K is well resolved. These data
we have obtained on a single crystal using a Quantum
Design PPMS system.

Fitting a power function to the heat capacity data of
the range 2 � T � 10 K gives exponent 4.036 ± 0.020.
In this temperature range the heat capacity increases by
a factor of 500. Comparison with the Debye T 3 func-
tions of the non magnetic reference compounds ZnF2 and
SrF2 [24] shows that the heat capacity of MnF2 is consid-
erably larger. This is clearly due to the magnetic degrees
of freedom.

It is important to note that universality of lattice and
magnetic heat capacity for T → 0 has the consequence
that the two ordered subsystems give rise to one common
universal power function for T → 0 [4]. The subsystem
with the larger heat capacity will be relevant and defines
the universal exponent. The subsystem with the smaller

heat capacity modifies the pre-factor of the power function
only. For MnF2 with a relatively low Néel temperature of
67.5 K [25,26] the magnetic heat capacity is larger than
the lattice heat capacity for T → 0. It can therefore be as-
sumed that the observed T 4 function is essentially defined
by the magnetic degrees of freedom. Otherwise Debye’s T 3

function would be observed [4]. The T 4 function can, how-
ever, occur also in non magnetic materials such as silicon,
germanium and in vitreous silica [4].

The exponent of the non asymptotic T 3/2 function is
not observed in non magnetic materials and can clearly be
attributed to the magnetic subsystem. Typical for a non
asymptotic power function is that it does not extrapolate
into the origin. It is therefore important to always include
an absolute constant in fitting a power function to the
experimental data.

The two exponents 4 and 3/2 are theoretically unex-
plained at present. We can only assume that they result
by the complicated interplay between lattice and magnetic
heat capacity with a dominating magnetic contribution.
Indication for this is the crossover at T ∗ = 12 K. This
temperature is typical for the validity limit of Debye’s
T 3 function in the non magnetic solids. This crossover
therefore could be due to the change from continuous to
atomistic dynamic symmetry of the lattice. This process
occurs, so to say, in the non magnetic background.

4 Relevant and non relevant interactions

The principle of relevance is very important. Figure 5 has
demonstrated this for the competition between lattice and
magnetic heat capacity for T → 0. It can be assumed that
the strongest interaction will be relevant and defines the
universal exponent.

A further example for the principle of relevance is the
anisotropy of the magnetic interactions. Since we consider
bulk magnets with a pure spin moment there is no single
particle anisotropy, i.e. the spin can point in any direc-
tion. Moreover the lattice symmetry is always 3D. We can
assume that in non cubic magnets the interactions are
different along the three space directions. Depending on
the ratio between these interactions the magnetic material
can fall either in the 3D, 2D or 1D universality class. The
magnetic dimensionality is determined by the strongest
interaction and can directly be recognized by the domain
structure. In 3D magnets there are three types of domains
with spin orientations along x-, y- and z-axis, respectively.
In cubic magnets these domains are equally populated.
In materials with axial lattice symmetry that are mag-
netically 1D only one domain type with spin orientations
along the main symmetry axis exists.

In the magnetically 1D bulk magnets finite trans-
verse interactions can be tolerated up to some thresh-
old value. These transverse interactions weakly couple the
spins transverse to the main symmetry axis and let the
spin structure appear three-dimensional. The transverse
correlation length is, however, finite. This has been evi-
denced in pioneering neutron scattering studies on tetrag-
onal MnF2 [27,28]. The finite transverse correlation length
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Fig. 6. Spontaneous magnetic moment of dysprosium after
reference [32] as a function of T 3/2. The observed saturation
moment of 10.23 µB/Dy is in good agreement with 10 µB/Dy
of the free Dy3+ ion and shows that the crystal field interac-
tion is not relevant [29]. The excess moment of 0.23 µB/Dy is
attributed to polarization contributions of the conduction elec-
trons. T 3/2 function (anisotropic 3D interactions) is consistent
with the half-integer moment J = 15/2 of the free Dy3+ ion
(6H15/2). Crossover to asymptotic T 5/2 function (1D interac-
tion) is not sufficiently resolved.

is defined by the strength of the transverse interactions.
These are too weak to be relevant and therefore leave the
universality class unchanged, i.e. 1D. As a consequence,
the universality classes have a considerable band width.
The band width is given by the span of the non relevant
interactions.

In magnets with an orbital moment the principle of
relevance can nicely be demonstrated on account of the
crystal field interaction [29]. The crystal field is a local
phenomenon due to the ligands and therefore affects the
magnon dispersions at the Brillouin zone boundary. Since
the magnon dispersions are not relevant the crystal field
splitting is, in a first approximation, also not relevant un-
der the continuous dynamic symmetry of the long range
ordered state. This is noticed by a saturation magnetic
moment that conforms to the free ion value, i.e. to the
absence of the crystal field. Examples for a non relevant
crystal field are the ferromagnetic heavy Rare Earth (RE)
elements [30,31]. In these materials the crystal field inter-
action is smaller than the exchange interaction.

A measure for the strength of the crystal field is pro-
vided by the anisotropy of the paramagnetic susceptibility.
On the other hand, the strength of the exchange inter-
actions can be estimated from the critical temperature.
In hexagonal dysprosium, for instance, the crystal field
gives rise to a paramagnetic anisotropy of Θ⊥ − Θ‖ =
169 − 121 = 48 K [30–32]. This is by no means negligible
compared to the ordering temperature of 178.5 K. Never-
theless, the observed saturation moment per Dy atom of
10.23 µB is even larger than the free Dy3+ value of 10 µB

due to polarization contributions of the conduction elec-

Fig. 7. Spontaneous magnetic moment of dysprosium after
reference [34] as a function of T 2. Observation of the full mo-
ment of the free Dy3+ ion (10 µB/Dy) shows that the crystal
field is not relevant [29]. The excess moment of 0.24 µB/Dy
is attributed to polarization contributions of the conduction
electrons [30,31]. Observation of T 2 function (isotropic 3D in-
teractions) is in contrast to the result of Figure 6. In spite of
a very similar spontaneous magnetization curve the exponents
(universality class) can be different due slightly different sam-
ple properties.

trons (see Fig. 6). A similar situation holds for the other
heavy RE elements [30,31].

Observation of the full saturation magnetic moment
implies that all 2J + 1 states of the free Dy3+ ion with
the electronic configuration 6H15/2 are relevant. J = 15/2
means N = 2J + 1 = 16, i.e. an even number of states.
Considering that the lattice symmetry is hexagonal the
relevant interactions can be expected to be either 3D
anisotropic or 1D. For an even number of states the as-
sociated universality classes are T 3/2 and T 5/2, respec-
tively [5,6]. These power functions are, in fact, observed.
Figure 6 shows the spontaneous magnetization of Dy after
reference [32] as a function of T 3/2. The T 3/2 dependence
is clearly identified. Crossover to low temperature T 5/2

function is not sufficiently resolved. T 5/2 function means
1D symmetry. This would be consistent with the expecta-
tion that the symmetry of the universality class can only
decrease with decreasing temperature. The same type of
crossover from T 3/2 to T 5/2 is observed also for ferromag-
netic Gd with half-integer spin (S = 7/2) [33].

We should note that the universality classes can de-
pend sensitively on weak parameters such as the stoi-
chiometry or the lattice strain of the sample. Metastability
of the universality classes is illustrated by a comparison
between Figures 6 and 7. In contrast to the results of Fig-
ure 6 pure T 2 function is identified in the spontaneous
magnetization of Dy after reference [34] in Figure 7. T 2

function indicates isotropic 3D behaviour.
The saturation moment of 10.24 µB/Dy in Fig-

ure 7 [34] is in perfect agreement with 10.23 µB/Dy in
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Table 2. Relevant crystal field interaction in ferromagnetic heavy rare earth (RE) alloys with composition REPt2. The first
column gives the number of states of the free RE3+ ion. The second column gives the theoretical saturation moments of the free
RE3+ ion in Bohr magnetons. The experimental saturation moments, mexp, are after reference [35] (third column). Choosing a
suitable effective number of states with Neff < N0 effective saturation moments, meff , can be calculated according to equation (1)
that agree excellently with the observed moments mexp.

N0 = 2J + 1 mtheor (µB) mexp (µB) Neff meff (µB)
TbPt2 13 9 6.87 10 6.92
DyPt2 16 10 6.87 11 6.87
HoPt2 17 10 8.26 14 8.23
ErPt2 16 9 7.37 13 7.31

Figure 6 [32]. Also the critical temperatures are, practi-
cally, identical. In other words, the two material specific
ending points of the spontaneous magnetization curve are
unchanged. These ending points are determined by the
strong atomistic interactions. The universal temperature
function(s) between these ending points is due to the exci-
tations of the continuous symmetry and can depend sensi-
tively on various weak parameters. This demonstrates that
the excitations of the continuous symmetry are indepen-
dent of the atomistic interactions and define the magnetic
dimensionality.

The effect of a strong crystal field is to reduce the
number of relevant states at low temperatures. This gives
rise to a saturation moment that is reduced with respect
to the free-ion value. It can be assumed that the number of
relevant states is always an integer or, equivalently, that
the material always fits one of the universality classes.
As a consequence, reduction of the observed saturation
moment as a function of an increasing crystal field can
be expected to be in discrete steps. Any change of the
number of states changes the universality class. This was
already demonstrated by Figure 3.

The crystal field interaction must be comparable or
larger than the exchange interaction in order to become
relevant. This seems to be the case for RE compounds or
alloys with a relatively low ordering temperature. In Ta-
ble 2 we have compiled some data for the heavy REPt2
alloys after reference [35]. These alloys have Curie tem-
peratures below 40 K only. If we assume that the crystal
field interaction has the same order of magnitude as in
the heavy Rare Earth elements the ratio of crystal field
interaction to exchange interaction is much larger for the
REPt2 alloys than for the RE elements. The crystal field
therefore will be relevant.

It can be seen in Table 2 that the experimentally
observed saturation moments (mexp) are considerably
smaller than the theoretical values (mtheor) of the free
RE3+ ions. The simplest possible explanation is to at-
tribute the reduced moments to an effective number of
states Neff that is smaller compared to the total number
of states, N0. In other words we assume

mexp/mtheor = Neff /N0. (1)

Choosing suitable values for Neff it is possible to calcu-
late meff values that are in surprising good agreement
with mexp. The agreement between mexp and meff is,
in fact, excellent considering that equation (1) assumes

a constant Landé factor, independent of the number of
relevant states.

5 Conclusions

In the magnetically long range ordered state and in the
critical range above Tc the atomistic structure is of no
importance for the dynamics. This we conclude from the
observed universality in the temperature dependence of
the magnetic order parameter for T → 0 and from the
well known universality of the critical power functions for
T → Tc. Other quantities such as the heat capacity also
show universality for T → 0 [4]. It seems that also magne-
tostriction shows universal temperature dependence [36].
Universality can only be explained in the framework of a
continuum theory. However, a continuum theory of mag-
netism for T → 0 in analogy to Debye’s continuum theory
of the lattice dynamics is missing.

On the other hand, the atomistic structure and the
discrete Heisenberg near neighbour exchange interactions
are present also in the ordered state. The experimentally
known magnon dispersions prove this. The magnon dis-
persions are determined by the atomistic symmetry and
are material specific. They represent the interactions be-
tween the spins and determine (static) properties such as
spin structure and transition temperature. In particular,
ferromagnets and antiferromagnets have different magnon
dispersions. The observed universal exponents are, how-
ever, independent of spin structure and lattice symmetry.
As a conclusion, the magnons cannot be the relevant ex-
citations.

The observed universal power functions are due to
the excitations of the continuous magnet. In a contin-
uum there are no interactions but only excitations. This
is a completely different situation compared to the inter-
atomic interactions of the atomistic symmetry. It can
be assumed that the quasi particles of the continuous
symmetry have linear dispersion in all 3D magnets. In
this way universality can be explained. The non univer-
sal pre-factor of this linear dispersion (the stiffness con-
stant) scales with the non universal transition tempera-
ture and is determined by the atomistic interactions. In
other words, atomistic and continuous excitations have
clearly distinguished functions. Compared to the magnons
the quasi particles of the continuous symmetry must have
either lower dispersion energy or higher density of states



158 The European Physical Journal B

in order to be relevant. In this respect the magnons can
be viewed as epithermal excitations. The quasi particles
of the magnetic continuum have properties as described
by Goldstone, Salam and Weinberg, i.e. they have nei-
ther magnetic moment nor mass and therefore are not
interacting with each other and also not interacting with
neutrons [10]. These particles behave as a gas.

Speaking in terms of the wave picture the quasi parti-
cles of the continuous symmetry are plane magnetic waves.
It is evident that magnetic plane waves carry no net mag-
netic moment. This makes the quasi particles non inter-
acting. Speaking in terms of the particle picture the quasi
particles of the continuous symmetry must be spin com-
pensated in a similar way as it is known from the Cooper
pairs of superconductivity [37].

Wavelength and energy of the magnetic fluctuations
are limited by the near neighbour interactions in the
paramagnetic phase. On this length scale the short range
Heisenberg interactions are relevant. These interactions
can be extracted from the observed magnon dispersions.
They define the Curie-Weiss susceptibility and the non
universal transition temperature.

One interesting possibility to directly observe the ex-
citations of the magnetic continuum seems to be provided
by the standing magnetic waves in thin magnetic films.
These resonating modes along the film normal have been
called standing spin waves [38] which appears mislead-
ing. Because the standing magnetic waves can be observed
also in amorphous ferromagnets and in partly crystalline
permalloy films [39] it is justified to identify the standing
waves with the excitations of the magnetic continuum.

Normally films with thickness of a few hundred
nanometers are used in these resonance experiments.
These films are 3D [40]. This is confirmed by the T 2 tem-
perature dependence of the uniform precession mode (the
mode with wave vector k = 0) [41]. Note that T 2 de-
pendence is observed also in bulk magnets (see Figs. 1
and 3). However, upon excitation of standing waves with
sufficiently large wave vector values, i.e. with sufficiently
short wavelengths T 3/2 dependence is observed [42]. The
T 3/2 dependence has been observed in many resonance
experiments and is typical for 2D magnets. As a conclu-
sion, a dimensionality crossover from 3D to 2D is induced
upon excitation of standing waves. The modulated lay-
ered structure due to excitation of standing waves seems
to make the films 2D. This proves again the meta-stability
of the universality classes.

The crossover from 3D to 2D occurs at small k val-
ues. This can be seen in Figure 8. In these resonance ex-
periments the radio frequency commonly is constant and
resonance condition is achieved by adjusting the magnetic
field. It can be seen that for large order numbers, n, of
the standing waves quadratic dispersion is observed (note
that k ∼ n). For small order numbers a linear disper-
sion can be identified. This means that in two dimensions
the excitations of the magnetic continuum have quadratic
dispersion but in three-dimensions they have linear dis-
persion. More detailed experimental studies seem to be
necessary to finally confirm this conclusion.

Fig. 8. Field for resonance of standing magnetic waves across a
thin nickel film as a function of the order number squared (n2),
after reference [43]. Uniform precession is for n = 0. Because of
a fixed resonance frequency (9.3 GHz) resonance condition is
set by a magnetic field. Crossover from linear dependence ∼n
to quadratic dependence ∼n2 can be identified. This means
crossover from linear to quadratic dispersion. For Hres ∼ n
the dynamic symmetry of the film is 3D but for Hres ∼ n2 it
is 2D (see text).

The new phenomenon in the long range ordered state is
that the dynamics is different for integer and half-integer
spin quantum numbers, i.e. for an odd or even number
of relevant states [5,6]. This also shows that the universal
temperature functions are not due to the Heisenberg inter-
actions. The change from atomistic to continuous interac-
tions is at the crossover from Curie-Weiss susceptibility to
critical susceptibility [11]. Because of the spin dependence
we can assume that the plane waves of the continuous sym-
metry have different polarization properties in materials
with integer or half-integer spin values.

As a conclusion, a new continuum theory of magnetism
has to be developed that explains all features that are
outside the scope of the Heisenberg model: universality at
T = 0, different universality classes for an even and odd
number of states per magnetic particle and long range
magnetic order in one and two dimensions [44–46].

We are much indebted to N. Stüsser of HMI/Berlin for the
valuable support in the neutron scattering measurements (in-
strument E6). Thanks are also to J. Englich (Charles Univer-
sity Prague) for providing us with the 61Ni NMR data.
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6. U. Köbler, A. Hoser, D. Hupfeld, Physica B 328, 276

(2003)
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23. U. Köbler, A. Hoser, K. Fischer, M. Beyss, Appl. Phys. A

74, S604 (2002)
24. Y.S. Touloukian, E.H. Buyco, Thermophysical Properties

of Matter, Vol. 5 (IFI/Plenum, New York-Washington,
1970)

25. J. Strempfer, T. Brückel, U. Rütt, J.R. Schneider, K.-D.
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41. U. Köbler, J. Phys.: Condens. Matter 14, 8861 (2002)
42. T.G. Phillips, H.M. Rosenberg, Phys. Rev. Lett. 11, 198

(1963)
43. T.G. Phillips, H.M. Rosenberg, Proc. Int. Conf.

Nottingham 306 (1964)
44. N. D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133

(1966)
45. P. Bruno, Phys. Rev. Lett. 87, 137203-1 (2001)
46. A. Gelfert, W. Nolting, J. Phys.: Condens. Matter 13,

R505 (2001)


